Technical Documentation / Instruction Manual

Local Override/Indication Devices (LO/ID) for use in building automation and control systems in accordance with DIN EN ISO 16484 / VDI 3814
 with
 Modbus RTU interface

for DIN rail mounting

$$
\because \square
$$

romutec ${ }^{\circledR}$
Steuer- u. Regelsysteme GmbH
Jochsberger Straße 39
D-91592 Buch am Wald
Phone: +49 (0) 98 67/ 97 90-0
Fax: +49 (0) 98 67/ 97 90-90
E-Mail: info@romutec.de

Contents

1 Features and advantages of romod... 3
2 General information .4
2.1 Notes on the operating manual
2.2 Safety information 4
3 System description 5
4 Configuration6
4.1 Hardware 6
4.2 Bus connection to Modbus master devices 7
4.2.1 Communication within Modbus master-slave systems 7
4.2.2 Terminal assignment of the Modbus RTU (RS485) port 7
4.2.3 Recommended cable types for bus wiring 7
4.2.4 Modbus commands supported 7
4.3 Configuration registers 8
5 Description of available modules for Modbus connection 9
5.1 Digital input module 16 DI 9
5.2 Digital output module with MOSFET outputs 8 DO 11
5.3 Digital output module with relay outputs 8 DO-R 13
5.4 Digital input/output module with relay outputs 4 DIO-R 15
5.5 Digital output module with relay outputs 4 DO-R 18
5.6 Analog input module 8 AI 20
5.7 Analog output module 8 AO 22
5.8 Digital input/output module with relay outputs 4DI2DO-R-3P 24
Appendix 27
A) Technical specifications 27
B) Dimensions and weights 28
C) Wiring diagrams 29
Fig. C-1 : romod 16 DI 29
Fig. C-2 : romod 8 DO 30
Fig. C-3 : romod 8 DO-R 31
Fig. C-4 : romod 4 DIO-R 32
Fig. C-5 : romod 4 DO-R 33
Fig. C-6 : romod 8 AI 34
Fig. C-7 : romod 8 AO 35
Abb. C-8 : romod 4DI2DO-R-3P 36
D) Types and Registers overview. 37
D1 - Overview of Registers 16DI Module. 38
D2 - Overview of Registers 8DO and 8DO-R Module 42
D3 - Overview of Registers 4DIO-R Module 46
D4 - Overview of Registers 4DO-R Module 54
D5 - Overview of Registers 8AI Module 59
D6 - Overview of Registers 8AO Module 61
D7 - Overview of Registers 4DI2DO-R-3P Module. 63
D8 - Overview of Registers which all modules have in common 69

DIN rail mounted

Local Override/Indication Devices (LO/ID) in accordance with DIN EN ISO 16484 / VDI 3814

with
Modbus RTU interface

romod

1 Features and advantages of romod

romod, the LO/ID for DIN-rail mounting from romutec ${ }^{\circledR}$, provides the following features:

- Clear arrangement and presentation of the plant's status
- Manual intervention and override of outputs possible at any time
- Connection between modules and DDC acc. to Modbus specifications
- Manual control functions and fault indicating system (acc. to DIN VDI 3814)
- Easy wiring of the DIN-rail mounted devices
- Optimization of the size of the cabinet because of small footprint on the mounting plate
- Easily expandable due to modular design
- No high investment costs for programming interfaces, no gateways necessary
- Automatic baud rate detection (autobaud)
- Applications: systems of building automation, e.g. heating, ventilation, air conditioning and refrigeration systems, as well as in equipment for operational control
- Direct connection to the Modbus RTU interface as slave devices
- Connection via RS485 (EIA485)
- The romutec® LO/ID operates as slave to all PLC or DDC systems that can provide Modbus RTU master functionality. Programming is done via the corresponding programming environment of the master system.

Copyright

Copyright © 2023 romutec® Steuer- u. Regelsysteme GmbH . All rights reserved. Without the express written permission, this manual may not be reproduced, transmitted, transcribed, stored in a data recording system, or translated into any language or computer language, neither in whole or in part. This applies to any form and any means, whether electronic, mechanical, magnetic, optical, manual, or any other way.

Modbus \circledR^{\circledR} is a registered trademark of Schneider Electric, licensed to the Modbus Organization, Inc.

2 General information

2.1 Notes on the operating manual

To take full advantage of your new local override/indication devices (LO/ID), you should read all the chapters of this manual to get information about the features of the equipment and to learn how to safely use the system.

2.2 Safety information

Before you put your devices into operation, you should read the following carefully. This also applies if any questions should arise at a later time.

Intended use:

The devices are to be used exclusively for the terms and features specified in this documentation. With improper use, the manufacturer assumes no product liability and warranty claims.

- Follow all warnings and notes marked on the device or listed in the technical documentation.
- Operate the devices only when properly mounted on a DIN-rail or in a appropriate mounting frame
- The modules should not be installed in the immediate vicinity of frequency converters.
- Frequency converters must be provided with all safety measures in order to comply with the required regulations and guidelines (e.g. line filter, etc.)
- Do not use the product near water or other liquids which can damage the electronic components.
- The supply voltage must correspond to the information in the technical data.
- The terminals of the device should only be wired by authorized and trained personnel.
- Do not perform wiring work whenever the device is powered. There is a risk of electrical shock.
- Connecting and disconnecting the terminals or connectors under voltage should be avoided. The devices might be destroyed.
- Make sure that no objects, e.g. screws or other fastening material, gets into the device.
- Avoid installation in areas with extreme temperature fluctuations. The temperature ranges for storage and operation which are given in the datasheet must be maintained to ensure trouble-free operation.

However, should problems occur, do not try to repair the device yourself. Do not open or disassemble the device. Doing so, parts inside the device might be damaged on contact. Basically, if you have any problems please contact the manufacturer.

3 System description

The romod module family is a set of romutec ${ }^{\circledR}$ local override/indication devices (LO/ID) for mounting on DIN rails. It consists of various types of I/O modules. The connection to the Modbus master device is done via a RS485 connection. The communication takes place via Modbus RTU.

Functionally, the romutec $®$ local override/indication devices replace conventional switches and indicator lamps, fault indicating systems and coupling relays etc. in conventional cabinets. A large part of costly point-to-point connections so may be substituted by a cheaper bus cabling.

Each module has its own RS485 bus interface, therefore no gateway module is required. The address is set by means of an 8-pole dip switch. The available range of addresses is $0 . . .254$.

The local override/indication devices operate as slave modules with any Modbus master.
The system can be used at all RS485 ports. The baud rate of the protocol will be automatically detected when receiving several telegrams.

As expansion modules the following types are available:

- Digital signaling modules 16 DI , activation of the inputs conventionally wired via terminal and passing over the bus to the Modbus master device for further processing.
- Digital output modules 8 DO with ground referenced semiconductor outputs +24 V DC, activation of outputs by commands via Modbus or manual override with integrated sliding switches possible.
- Digital output modules 8 DO-R with potential-free relay outputs (two groups with four relays each), activation of outputs by commands via Modbus or manual override with integrated sliding switches possible.
- Digital input/output modules 4 DIO-R with four digital inputs and four potential-free relay outputs (normally open contacts), activation of outputs by commands via Modbus or manual override with integrated sliding switches possible.
- Digital output modules 4 DO-R containing four bistable relay outputs (normally open contacts), activation of outputs by commands via Modbus or manual override with integrated push buttons possible.
- Analog input modules 8 AI , input signals conventionally wired via terminals and passing over the bus to the Modbus master for further processing. Quantitative visualization of the input signal by means of LEDs in light / dark operating mode (with $0 . .10 \mathrm{~V}$ signals), or indication of a wire break when using resistive sensors, configurable sensor inputs ($0 . .10 \mathrm{~V}$ and various RTD).
- Analog output modules 8 AO, setting the output values by commands via Modbus, manual override with integrated sliding switches and potentiometers possible.
- Digital input/output modules 4DI2DO-R-3P with four digital inputs and 2x 3-point potential-free relay outputs in two groups for controlling $2 x$ Open-Stop-Close drives, activation of outputs by commands via Modbus or manual override with integrated sliding switches possible.

4 Configuration

4.1 Hardware

Maximum number of expansion modules per Modbus interface

Basically, as many romod devices can be connected to a bus interface as addresses can be set. The complete address range of $0 \ldots 254$ is available. However, please adhere to the DDC's manufacturer's recommendations concerning the maximum number of slave devices which may be connected to the bus interface of the master device, as well as any constraints given for the address range.

Installation and wiring

Installation and wiring of the modules which are containing the hardware IOs will be done in the cabinet on the mounting plate.

Addressing

The address which is used for communication with the module has to be set by means of a dip switch in the range of 0 ... 254. Dip \#1 (most left) represents the value 1, Dip \#8 (most right) signifies the value 128.

The following should be considered when setting the addresses:

- There are not allowed any duplicate addresses. Each address can be assigned only once per Modbus line.
- The addresses can be selected arbitrarily in the range of 0 ... 254, setting sequential addresses is not necessary.
- Note: When setting the address 255, the device performs a reset followed by a lamp test. Doing so, all parameters stored in the EEPROM will be reset to factory settings. Important: This also happens during operation, without de-energizing the module in the meantime!

Using the EOL switch (two pin dip switch), the bus can be terminated (active termination, 560R / 120R / $560 \mathrm{R})$. For this purpose, set both dip switches $(1+2)$ to the 'ON' position.

Meaning of the status LEDs (valid for all modules):

Power	Green	Steady light = operational
	Orange	Autobauding, determining the baud rate
Bus	Green	Communicating with the master
	Red	Faulty telegram received, communication error, timeout
	Red/Green	Custom usable LED
Status 2	Red/Green	Custom usable LED

4.2 Bus connection to Modbus master devices

4.2.1 Communication within Modbus master-slave systems

For communication between a controller (DDC or PLC) and the romutec ${ }^{\circledR}$ local override/indication devices (LO/ID), it is necessary to configure an RS485 interface of the controller as Modbus master with the serial port parameter settings $\mathbf{8 , N , 1}$. This is done with the programming software of the manufacturer of the controller.
For questions, please consult the manual or contact the manufacturer of the controller.

4.2.2 Terminal assignment of the Modbus RTU (RS485) port

The terminal assignment for the bus connection of the romod series to Modbus RTU master devices is for all module types as follows:

Type of Interface	Function	Terminal No.	Modbus Connection
RS485	Rx-Tx (Net_B)	5	B (-)
	/Rx-/Tx (Net_A)	4	A (+)
	I-GND	3	Bus-GND

The bus interface is electrically isolated. The I-GND terminals must always be wired, whether with braided shield or individual strands, and connected to ground / earth potential. There is no internal connection between I-GND and the GND of the power supply.

Terminating the RS 485 interface (acc. EIA-485) is required. Therefore, the termination has to be enabled by means of the two-pole dip switch on the last device which is connected to the bus. When terminating, set both dip switches $(1+2)$ to the 'ON' position. The termination will be realized within the device in active mode.
Additionally, in every module a bias resistor of $47 \mathbf{k}$ is present, which is enabled always.

4.2.3 Recommended cable types for bus wiring

For a total length
up to 100m:
more than 100m:

Cable type:
Line resistance:
Capacitance:

LIYCY $1 \times 2 \times 0,5 \mathrm{~mm}^{2}$ shielded <4,0 / 100m
< 13.0nF / 100m

CYPIMF $1 \times 2 \times 0,5 \mathrm{~mm}^{2}$ shielded
<4,0 $/ 100 \mathrm{~m}$
<6.0nF / 100m

4.2.4 Modbus commands supported

The following commands will be supported:

Function Code	Command	Specifics and limitations
$\mathbf{0 3}$	Read Holding Registers	Reading a contiguous block of registers is possible only for certain registers; other registers must be read individually (number of registers = 1).
$\mathbf{0 6}$	Write Single Register	Write Multiple Registers
$\mathbf{1 6}$	Writing a contiguous block of registers is possible only for certain registers; other registers must be written individually (number of registers =1).	

4.3 Configuration registers

Selection: Controlling the DI LEDs via bus command or via input terminals

By default, the DI LEDs are driven depending on the activation of the hardware inputs. In this mode of operation, they are signaling the state of the digital inputs. If the LEDs, in contrast, shall be controlled via Modbus commands, this has to be defined previously in a configuration register ('Setting the Mask for DI indicating LEDs'). This is done separately for red and green.

Selection of the LED color if LEDs are controlled via DI input terminals

If the DI LEDs are driven via the digital inputs of the module, then this so-called masks ('LED Color red/green when controlled via terminal input') will define the color of the LEDs, separately for red and green.

Selection: Inverting of the digital inputs

The logical status of the digital inputs can be inverted by using the register 'Inverting Digital Inputs'. If the LEDs are controlled together with the corresponding inputs via the terminals, then the associated LEDs will follow the logical state.

Selection: ,Safe State' of the digital and analog outputs

All digital and analog outputs can be configured so that they will assume a defined state ('safe state') if the module has not received valid bus telegrams via the Modbus for a certain time. These predefined states are set separately for each output, whereas the time until activating the safe state is common for all outputs of a module.
Note: The time for triggering the 'safe state' should not be too short in order to avoid malfunctions as they can occur, e.g., when another device which is connected to the bus fails and will so cause time-outs.

Selection of the sensor types for analog inputs

The analog inputs can work with different types of sensors (active and passive ones). The sensor type is defined for each analog input using a configuration register ('Types of sensors connected to the analog inputs'). This has an effect on the displayed analog values, as the sensor characteristics are implemented in the module.

Selection: Automatic baud rate detection or manually setting the baud rate

It can be selected whether the automatic baud rate detection shall be active permanently or only in the first 5 minutes after a cold start. Furthermore, autobauding can also be completely deactivated. In this case, the device will work with a fixed baud rate which has to be set in another register.

Setting the value for 'bus timeout'

The LED 'Bus' starts flashing in red color and the safe state function of the outputs will be activated if no valid bus telegram is received for a certain time. This time is defined by the value which is set in the register 'bus timeout'.

Register used for sending a command to the module

By means of this register, functions like lamp test, resetting the counters, or the reset of all configuration registers can be triggered by sending a command to the device.

5 Description of available modules for Modbus connection

5.1 Digital input module 16 DI

The digital input module romod 16 DI is used for signaling of up to 16 digital messages. These include operating messages, error messages such as frost, filter dirty or fan belt damaged, and status messages such as damper positions.

The control of the inputs will be done with 24 V switched by external dry contacts that are connected to the module via terminals.

The reference potential is defined via the COM terminals and can be both, 0 volts and 24 volts. When using a reference potential of +24 volts, a control of the digital inputs with 0 V potential can be realized. The two COM terminals are connected internally, but not with the GND of the power supply, i.e. that reference potential for the inputs has to be connected anyway.

Using the settings in Modbus registers, you can select open circuit or closed-circuit principle for each input separately. Also, the color of each of the 16 LEDs is adjustable via a Modbus configuration register, either red, green or orange.

Furthermore, the LEDs can be controlled via Modbus commands, provided that this option previously has been defined in a configuration register. This setting can be made individually for each LED.

The digital inputs can be used as counters, but only for DC signals. For each input, a prescaler may be adjusted in order to count, e.g., just every second or third pulse. A subsequent change of the prescaler also results in a (retroactive) amendment of the corresponding counter values. The pulse duration must be at least 10 ms to be reliably detected.

For AC control of the inputs, the edge detection has to be delayed via configuration registers (see registers R1101 and R1111). In case of 50 Hz , this value should be set to at least 40 ms in order to avoid the counting of false detections. The maximum counter value when using a prescaler of 1 is 65,535 (which is equivalent to 2^{16-1}).

There is a register that displays whether and which DI has changed since the last time this register has been read. When reading this register, all bits are reset to zero automatically. If a Dl's status has altered several times, e.g. from 0 to 1 and back to 0 , a change will be signalized, anyway.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Important technical data:

Power supply:
Current consumption:

24 V AC or DC , connection via terminals max. 150 mA (DC), 220 mA (AC), all DIs loaded

Overview terminal assignment:

Sink and source operation mode is possible with the inputs. The two COM terminals of the DIs are bridged internally.

Modbus Connection	Terminal No.		
I-GND	3		
$A(+)$		4	
$B(-)$			5

Examples for activating the digital inputs with reference potential of OV and 24 V :

Activating DI with "positive potential" (24 Volts):

Activating DI with "negative potential" (0 Volts):

5.2 Digital output module with MOSFET outputs 8 DO

The digital output module romod 8 DO is a Local Override/Indication Device (LO/ID) which is used to control eight 1-stage motors, or other digital actuators. By means of the integrated switches, it provides the ability of manual override of the DOs which are usually controlled via Modbus commands.

The digital MOSFET outputs are provided by the module via terminals. They are ground referenced, + 24VDC.

The source voltage for the DOs is also connected via terminals and must be +24 volts (DC). The two supply terminals are connected with each other internally, but not with the 24 V power supply, i.e. there must be applied a source voltage for the outputs in any case.

For each DO there is a LED present which signalizes the status of the digital outputs. Using the settings in the relevant Modbus register, for each of this LEDs the color can be defined to either red, green or orange.

Furthermore, the LEDs can be controlled via Modbus commands, provided that this option previously has been defined in a configuration register. This setting can be made individually for each LED.

The current positions of the switches can be read out using two registers. Doing so, one register shows the switch position "Manually ON" and the other one the switch position "Automatic".

There is a register that displays whether and which switch has been operated since the last time this register has been read. When reading this register, all bits are reset to zero. If the position of a switch has been altered several times, e.g. from AUTO to OFF and back to AUTO, a change will be displayed, anyway.

All digital outputs can be configured so that they will assume a defined state ('safe state') if the module has not received valid bus telegrams via the Modbus for a certain time. These predefined states are set separately for each output, whereas the time until activating the safe state is common for all outputs of a module.

Note: The time for triggering the 'safe state' should not be too short in order to avoid malfunctions as they can occur, e.g., when another device which is connected to the bus fails and will so cause time-outs.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Important technical data:

Power supply:
Current consumption:
Specifications digital outputs:
Output current
Voltage drop Inductive loads
+24 V AC or DC, connection via terminals typically 21 mA (DC), $60 \mathrm{~mA}(\mathrm{AC})$, outputs WITHOUT any load

MOSFET, ground referenced (source operation mode +24 VDC)
$5 \ldots 500 \mathrm{~mA}$ (leakage current max. 0.1 mA)
The load resistance shall not be less than 48Ω.
max. 0.4 V at 0.5 A
should be avoided as far as possible, or be suppressed at the source, respectively.

Overview terminal assignment:

The two supply terminals $(10+19)$ for the DOs are connected with each other internally.

Modbus Connection	Terminal No.		
I-GND	3		
$A(+)$		4	
$B(-)$			5

5.3 Digital output module with relay outputs 8 DO-R

The digital output module romod 8 DO-R is a Local Override/Indication Device (LO/ID) which is used to control eight 1 -stage motors, or other digital actuators. By means of the integrated switches, it provides the ability of manual override of the DOs which are usually controlled via Modbus commands.

The relay outputs provide the normally open contact of each relay. They will be contacted via terminals.

The signal that will be switched by the relay contacts also has to be connected via terminals. The eight relay outputs are divided into two groups of four outputs. The two groups are not linked internally, so both COM-terminals must be wired.

Important: The signals to be switched must have

 the same phasing.For each DO there is a LED present which signalizes the status of the digital outputs. Using the settings in the relevant Modbus register, for each of this LEDs the color can be defined to either red, green or orange.

Furthermore, the LEDs can be controlled via Modbus commands, provided that this option previously has been defined in a configuration register. This setting can be made individually for each LED.

The current positions of the switches can be read out using two registers. Doing so, one register shows the switch position "Manually ON" and the other one the switch position "Automatic".

There is a register that displays whether and which switch has been operated since the last time this register has been read. When reading this register, all bits are reset to zero. If the position of a switch has been altered several times, e.g. from AUTO to OFF and back to AUTO, a change will be displayed, anyway.

All digital outputs can be configured so that they will assume a defined state ('safe state') if the module has not received valid bus telegrams via the Modbus for a certain time. These predefined states are set separately for each output, whereas the time until activating the safe state is common for all outputs of a module.

Note: The time for triggering the 'safe state' should not be too short in order to avoid malfunctions as they can occur, e.g., when another device which is connected to the bus fails and will so cause time-outs.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Important technical data:

Power supply:
Current consumption:

24 V AC or DC, connection via terminals typically $85 \mathrm{~mA}(\mathrm{DC}), 220 \mathrm{~mA}$ (AC) with all relay outputs activated

Specifications digital outputs: Relay outputs (NO contact), max. 250 VAC)
Characteristics (Resistive Load):
Initial contact resistance $100 \mathrm{~m} \Omega$ (at 1A / 24 VDC)
Rated load
Max. switching voltage
Max. switching capacity
Endurance
Inductive loads

3 A at $250 \mathrm{VAC} / 30 \mathrm{VDC}$
277 VAC, 30 VDC
830 VA (AC), 90 W (DC)
$1 \times 10^{5} \mathrm{ops}$ (Rated Load)
should be avoided as far as possible, or be suppressed at the source, respectively.

Overview terminal assignment:

The two COM supply terminals $(10+19)$ for the DOs are NOT connected with each other internally.

Important: The signals to be switched must have the same phasing.

Modbus Connection	Terminal No.		
I-GND	3		
$A(+)$		4	
$B(-)$			5

5.4 Digital input/output module with relay outputs 4 DIO-R

The module romod 4 DIO-R provides four digital inputs and four digital outputs. It is used to control four 1 -stage motors, or other digital actuators, and for signaling of up to four digital messages. These include operating messages, error messages such as frost, filter dirty or fan belt damaged, and status messages.

Furthermore, the romod 4 DIO-R is a Local Override/Indication Device (LO/ID), i.e. by means of the integrated switches, the module provides the ability of manual override of the DOs which are usually controlled via Modbus commands.

Digital outputs:

The relay outputs provide the normally open contact of each relay. They will be contacted via terminals.

Important: The signals to be switched must have the same phasing.

By means of configuration registers there can be defined that the digital outputs will also follow the signals of the digital inputs (in addition to the control via Modbus). Both, static control and toggling are possible. Moreover, on and off delays can be set for each output, as well as minimum times for the states ON and OFF.

Please note: The configured switching delays and minimum on / off times will only work when the outputs are activated via bus commands. Whenever manual override is applied, the operator will be responsible for the adherence to these times.

Mutual interlocking of outputs is also possible.
For each DO there is a LED present which signalizes the status of the digital outputs. Using the settings in the relevant Modbus register, for each of this LEDs the color can be defined to either red, green or orange.

Furthermore, the LEDs can be controlled via Modbus commands, provided that this option previously has been defined in a configuration register. This setting can be made individually for each LED.

The current positions of the switches can be read out using two registers. Doing so, one register shows the switch position "Manually ON" and the other one the switch position "Automatic".

There is a register that displays whether and which switch has been operated since the last time this register has been read. When reading this register, all bits are reset to zero. If the position of a switch has been altered several times, e.g. from AUTO to OFF and back to AUTO, a change will be displayed, anyway.

All digital outputs can be configured so that they will assume a defined state ('safe state') if the module has not received valid bus telegrams via the Modbus for a certain time. These predefined states are set separately for each output, whereas the time until activating the safe state is common for all outputs of a module.

Note: The time for triggering the 'safe state' should not be too short in order to avoid malfunctions as they can occur, e.g., when another device which is connected to the bus fails and will so cause time-outs.

Digital inputs:

The control of the digital inputs will be done with 24 V switched by external dry contacts that are connected to the module via terminals.

The reference potential is defined via the COM terminals and can be both, 0 volts and 24 volts, i.e. that reference potential for the inputs has to be connected anyway. When using a reference potential of +24 volts, a control of the digital inputs with 0 V potential can be realized.

Using the settings in Modbus registers, you can select open circuit or closed-circuit principle for each input separately. Also the color of each of the 16 LEDs is adjustable via a Modbus configuration register, either red, green or orange.

Furthermore, the LEDs can be controlled via Modbus commands, provided that this option previously has been defined in a configuration register. This setting can be made individually for each LED.

The digital inputs can be used as counters, but only for DC signals. For each input, a prescaler may be adjusted in order to count, e.g., just every second or third pulse. A subsequent change of the prescaler also results in a (retroactive) amendment of the corresponding counter values. The pulse duration must be at least 10 ms to be reliably detected.

For $A C$ control of the inputs, the edge detection has to be delayed via configuration registers (see registers R1101 and R1111). In case of 50 Hz , this value should be set to at least 40 ms in order to avoid the counting of false detections. The maximum counter value when using a prescaler of 1 is 65,535 (which is equivalent to 2^{16-1}).

There is a register that displays whether and which DI has changed since the last time this register has been read. When reading this register, all bits are reset to zero automatically. If a Dl's status has altered several times, e.g. from 0 to 1 and back to 0 , a change will be signalized, anyway.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Important technical data:

Power supply:
Current consumption:

24 V AC or DC, connection via terminals
typically 68 mA (DC), 152 mA (AC) with all relay outputs activated
Specifications digital outputs: Relay outputs (NO contact), max. 250 VAC)
Characteristics (Resistive Load):
Initial contact resistance
$100 \mathrm{~m} \Omega$ (at 1A / 24 VDC)
Rated load
Max. switching voltage
Max. switching capacity
Endurance
Inductive loads

3 A at 250 VAC / 30 VDC
277 VAC, 30 VDC
830 VA (AC), 90 W (DC)
$1 \times 10^{5} \mathrm{ops}$ (Rated Load)
should be avoided as far as possible, or be suppressed at the source, respectively.

Overview terminal assignment:

Important: The signals to be switched must have the same phasing.

Modbus Connection	Terminal No.		
I-GND	3		
$A(+)$		4	
$B(-)$			5

Examples for activating the digital inputs with reference potential of 0 V and 24 V :

Activating DI with "positive potential" (24 Volts):

Activating DI with "negative potential" (0 Volts):

5.5 Digital output module with relay outputs 4 DO-R

The digital output module romod 4 DO-R is a Local Override/Indication Device (LO/ID) which is used to control four lighting circuits, or other digital actuators. By means of the integrated push buttons, it provides the ability of manual override of the DOs which are usually controlled via Modbus commands.

The relay outputs provide the normally open contact of each relay and will be contacted via terminals. They are implemented using bistable relays.

For each DO there are two LEDs present for indicating the status. The left LED signalizes whether the output is controlled via Modbus commands or whether it is manually overridden by the push button, whereas the right LED indicates the output's state (ON or OFF).

Changing between the modes 'Automatic' and 'Manual' is done by holding down the push button. The time required for this can be set together for all four channels. If a button is pressed for a too short time, the left LED ('Automatic') flashes orange for one single time shortly after releasing the button. If, however, the channel is blocked for manual override due to the settings in the mask, this LED flashes permanently during the button is pressed.

There is a register available that shows whether and which push button has been pressed since the last time this register has been read. When reading this register, all bits will be reset to zero. The current state of the push buttons and the outputs as well can also be read out via registers.

Furthermore, via a register there can be configured whether the outputs shall start in automatic mode or manually overridden (OFF). In addition, a delay time can be defined, which must elapse between the switching of two outputs at least. Thus, the system perturbations resulting from the switching operations can be reduced.

All digital outputs can be configured so that they will assume a defined state ('safe state') if the module has not received valid bus telegrams via the Modbus for a certain time. These predefined states are set separately for each output, whereas the time until activating the safe state is common for all outputs of a module.

Note: The time for triggering the 'safe state' should not be too short in order to avoid malfunctions as they can occur, e.g., when another device which is connected to the bus fails and will so cause time-outs.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Important technical data:

Power supply:
Current consumption:

24 V AC or DC, connection via terminals typically 14 mA (DC), 40 mA (AC)

Specifications digital outputs: Relay outputs (NO contact), max. 250 VAC)
Characteristics (Resistive Load):
Initial contact resistance $100 \mathrm{~m} \Omega$ (at 1A / 6 VDC)
Minimum switching current
Rated load
100 mA (at min. 5 VDC)
Max. switching voltage
Max. switching capacity
Endurance
Inductive loads

16 A at 250 VAC
277 VAC
4432 VA (AC)
2.5×10^{4} ops (Rated Load)
should be avoided as far as possible, or be suppressed at the source, respectively.

Overview terminal assignment:

Modbus Connection	Terminal No.		
I-GND	3		
$A(+)$		4	
$B(-)$			5

5.6 Analog input module 8 AI

The analog input module romod $8 \mathbf{A I}$ is used for connecting, measuring and signaling of up to eight analog sensor values.

The sensors will be connected to the module via terminals.

The reference potential for the analog inputs is available at the GND terminals. For two Als there is available one GND terminal in each case. All ground pins are connected to each other internally and to the GND of the power supply, as well.

Active signals $(0-10 \mathrm{~V})$ as well as various passive sensor types (e.g. Pt1000, Ni1000) may be connected to the module. If an input is configured for $0 . .10 \mathrm{~V}$ signals, its value will be signalized by the concerned status LED of the channel in light / dark operating mode in green color.
When using resistive sensors, a wire break of the sensor (open analog input) will be signalized by the LED of the channel in red color, otherwise it will be lit green dimmed. Unused inputs should be configured for $0-10 \mathrm{~V}$ signals and connected to GND potential.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Supported types of sensors:

Type of sensor	Measured range		Unit of the measured value
	from	to	
0.10 V	0 V	10 V	$m \mathrm{~V}(1000=1,000 \mathrm{~V})$
$0 . .5 \mathrm{k} \Omega$	0Ω	5000Ω	$\Omega / 10(1000=100,0 \Omega)$
$0 . .15 \mathrm{k} \Omega$	0Ω	15000Ω	$\Omega(1000=1000 \Omega)$
Pt 100	$-50,0^{\circ} \mathrm{C}$	$199,9^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
Pt 1000	$-50,0^{\circ} \mathrm{C}$	$199,9^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
Ni 1000	$-50,0^{\circ} \mathrm{C}$	$199,9^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
Ni 1000 L\&G	$-50,0^{\circ} \mathrm{C}$	$199,9^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
KTY81-110	$-55,0^{\circ} \mathrm{C}$	$149,9{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
KTY81-210	$-55,0^{\circ} \mathrm{C}$	$149,9^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
NTC 20k	$-50,0^{\circ} \mathrm{C}$	$149,9^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
NTC 10k	$-50,0^{\circ} \mathrm{C}$	$149,9{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$
KP10 / LM235	$-50,0^{\circ} \mathrm{C}$	$149,9{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$

Important technical data:

Power supply:
Current consumption:
Resolution AI Impedance

24 V AC or DC , connection via terminals max. 40 mA (DC), 80 mA (AC)

10 Bit
$20 \mathrm{M} \Omega$

Overview terminal assignment:

romod 8 Al							Als for active sensors $0 . .10 \mathrm{~V}$ and various types of RTD sensors							
Al No. 1-8							1	2	3	4	5	6	7	8
Terminal:							10	12	13	15	16	18	19	$\underline{21}$
GND for Als														
Terminal:			11	14	17	20								
Power supply														
Terminal:	1	2												

Modbus Connection	Terminal No.		
I-GND	3		
$\mathrm{~A}(+)$		4	
$\mathrm{~B}(-)$			5

5.7 Analog output module 8 AO

The analog output module romod 8 AO is a Local Override/Indication Device (LO/ID) which is used to provide eight $0-10 \mathrm{~V}$ control signals. These may be utilized, e.g., for controlling heating valves, dampers or frequency converters etc. By means of the integrated switches and potentiometers, it provides the ability of manual override of the AOs which are usually controlled via Modbus commands.

The analog $0-10 \mathrm{~V}$ outputs are provided by the module via terminals. The reference potential for the analog outputs is available at the GND terminals. For two AOs there is available one GND terminal in each case. All ground pins are connected to each other internally and to the GND of the power supply, as well.

The current positions of the switches ('Auto' or 'potentiometer') can be read from a register. Likewise, the potentiometers' positions can be polled from registers.

There is a register that displays whether and which switch has been operated since the last time this register has been read. When reading this register, all bits are reset to zero. If the position of a switch has been altered several times, e.g. from AUTO to POT and back to AUTO, a change will be displayed, anyway.

Also changes in the values of the potentiometers can be seen from a register. That register shows which potentiometer has been moved since the last time this register has been read. The corresponding analog value then can be polled specifically. Doing so, the bus cycle time may be reduced significantly.

All analog outputs can be configured so that they will assume a defined state ('safe state') if the module has not received valid bus telegrams via the Modbus for a certain time. These predefined states are set separately for each output, whereas the time until activating the safe state is common for all outputs of a module.

Note: The time for triggering the 'safe state' should not be too short in order to avoid malfunctions as they can occur, e.g., when another device which is connected to the bus fails and will so cause time-outs.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Important technical data:

Power supply:
Current consumption
Capacity of the outputs
Resolution AO
Linearity error

24 V AC or DC , connection via terminals
max. $120 \mathrm{~mA}(\mathrm{DC}), 160 \mathrm{~mA}(\mathrm{AC})$ with all analog outputs loaded
10 mA each (short circuit proof)
10 Bit
< +/- 2%

Overview terminal assignment:

Modbus Connection	Terminal No.		
I-GND	3		
$A(+)$		4	
$B(-)$			5

5.8 Digital input/output module with relay outputs 4DI2DO-R-3P

The module romod 4DI2DO-R-3P provides $2 x$ 3-point relay outputs $230 \mathrm{~V} / 3 \mathrm{~A}$ in two groups for controlling 2 OPEN-STOP-CLOSE drives or similar. The four digital inputs can be used to connect and signal four messages, such as operating messages, error messages or status messages.

Furthermore, the romod 4DI2DO-R-3P is a Local Override/Indication Device (LO/ID), i.e. by means of the integrated switches, the module provides the ability of manual override of the DOs which are usually controlled via Modbus commands.

Two switches belong to each of the two 3-point outputs. One is used to select between automatic mode (activation of the DO via bus command), OFF and manual override ON. The position of the other switch (OPEN-STOP-CLOSE) only affects the outputs if the first switch is in the "Manual" position.

Two LEDs are assigned to each of the two drives, which indicate the direction the blind is moving, as well as the current position of the blind. The meaning can be found in the following table:

LED •	LED $\boldsymbol{\nabla}$	Bedeutung
orange blinking		moving UP
	orange blinking	moving DOWN
OFF	OFF	Position $0 \ldots \leq 25 \%$
OFF	green	Position $25 \ldots \leq 50 \%$
green	OFF	Position $50 \ldots \leq 75 \%$
green	green	Position $75 \ldots \leq 100 \%$

While the blind is moving, the green LEDs that are showing the position will flash, too.

Digital outputs:

The relay outputs provide the normally open contact of each relay. They will be contacted via terminals.

Important: The signals to be switched must have the same phasing.

For each channel, running times for opening and closing the blinds can be parameterized, as well as times for over- and understeering (longer activation than required for the complete opening or closing of the blinds). Delay times for switching the drive on again and switching to the other direction can also be set. All values are stored in non-volatile form in Modbus registers.

Please note: The configured running times will only work when the outputs are activated via bus commands. However, the switching delays for reversing direction and switching on again are also effective in the manually overridden mode.

The current positions of the switches can be read out using two registers. Doing so, one register shows the switch position "Manually ON" or "Open" and the other one the switch position "Automatic" or "Close".

There is a register that displays whether and which switch has been operated since the last time this register has been read. When reading this register, all bits are reset to zero. If the position of a switch has been altered several times, e.g. from AUTO to OFF and back to AUTO, a change will be displayed, anyway.

Digital inputs:

The control of the digital inputs will be done with 24 V switched by external dry contacts that are connected to the module via terminals.

The reference potential is defined via the COM terminals and can be both, 0 volts and 24 volts, i.e. that reference potential for the inputs has to be connected anyway. When using a reference potential of +24 volts, a control of the digital inputs with 0 V potential can be realized.

By means of a configuration register, the four digital inputs can be defined for the use of limit switches. When an end position is reached, the drive then will switch off. At the same time, the position of the blind, which is constantly calculated in the module, is corrected to 0% (closed) or 100% (open) depending on the end position. If no end position is reached in automatic mode within the configured run times (open/close run time plus time for oversteering or understeering), the drive, however, will switch off for safety reasons, but not in manually oversteered mode.

Furthermore, the digital inputs can also be configured for controlling the outputs using externally connected switches. Doing so, the outputs can then be controlled in exactly the same way as with the switches on the module. Any configured runtimes are not taken into account - as is also the case in manually overridden operation.

Using the settings in Modbus registers, you can select open circuit or closed-circuit principle for each input separately. Also the color of each of the 16 LEDs is adjustable via a Modbus configuration register, either red, green or orange.

For AC control of the inputs, the edge detection has to be delayed via configuration registers (see registers R1101 and R1111). In case of 50 Hz , this value should be set to at least 40 ms in order to avoid the counting of false detections. The maximum counter value when using a prescaler of 1 is 65,535 (which is equivalent to $2^{16}-1$).

There is a register that displays whether and which DI has changed since the last time this register has been read. When reading this register, all bits are reset to zero automatically. If a DI's status has altered several times, e.g. from 0 to 1 and back to 0 , a change will be signalized, anyway.

Regarding the system configuration (addressing, maximum number of modules connected to a Modbus Master interface, installation, connection to the bus etc.), please follow the instructions in the chapter Configuration.

Steuer- u. Regelsysteme GmbH

Important technical data:

Power supply
Current consumption:

24 V AC or DC, connection via terminals typically 68 mA (DC), 152 mA (AC) with all relay outputs activated

Specifications digital outputs: Relay outputs (NO contact), max. 250 VAC)
Characteristics (Resistive Load):
Initial contact resistance
$100 \mathrm{~m} \Omega$ (at 1A / 24 VDC)
Rated load
Max. switching voltage
Max. switching capacity
Endurance
Inductive loads

3 A at 250 VAC / 30 VDC
277 VAC, 30 VDC
830 VA (AC), 90 W (DC)
1×10^{5} ops (Rated Load)
should be avoided as far as possible, or be suppressed at the source, respectively.

Overview terminal assignment:

Important: The signals to be switched must have the same phasing.

Modbus Connection	Terminal No.		
I-GND	3		
$A(+)$		4	
$B(-)$			5

Examples for activating the digital inputs with reference potential of OV and 24 V :

Activating DI with "positive potential" (24 Volts):

Activating DI with "negative potential" (0 Volts):

Appendix

A) Technical specifications

Supply voltage $\quad 24 \mathrm{~V}$ AC or DC, $\pm 10 \%$

Current consumption

16 DI
8 DO
8 DO-R
4 DIO-R, 4DI2DO-R-3P
4 DO-R
8 Al
8 AO

Power dissipation

16 DI
8 DO
8 DO-R
4 DIO-R, 4DI2DO-R-3P
4 DO-R
8 Al
8 AO
max. 3.6 W (DC), 5.3 W (AC), all Dls loaded
max. 2.1 W (DC), 3.1 W (AC) with max. load of outputs ($8 \times 0,5 \mathrm{~A}$)
max. 2.1 W (DC), 5.3 W (AC) with all outputs activated
max. 1.7 W (DC), 3.7 W (AC) with all outputs activated
max. 0.4 W (DC), 1.0 W (AC)
max. 1.0 W (DC), 1.9 W (AC)
max. 1.8 W (DC), 3.9 W (AC) with all analog outputs loaded

Counting puls (only digital inputs)
Max. counter value (digital inputs)

Bus interface

Supported baud rates
(Autobauding)

Bus cycle time

Memory

Max. number of write cycles

Protocol

Serial port parameter setting
Inputs and outputs
Environmental conditions
Operating temperature
Transport and storage temperature
Relative humidity
Protection class
Dimensions
duration min. 10 ms , only for DC signals
$65,535\left(=2^{16}-1\right)$

RS485

9,600 Baud, 19,200 Baud,
38,400 Baud, 57,600 Baud
individually depending on the baud rate and the number of data points that will be addressed
$\mu \mathrm{PC}$ internally
Configuration settings such as setting the LED colors, inverting the inputs, or upshift and downshift times are stored in the internal EEPROM and can be overwritten up to 100,000 times.

Modbus RTU (RS485)
8,N,1
see corresponding documentation of the respective modules
$0 . .50^{\circ} \mathrm{C}$
$0 . .70^{\circ} \mathrm{C}$
10... 90%, non-condensing

IP 20
(for exact dimensions see appendix B)

B) Dimensions and weights

The dimensions of the modules can be seen from the following figures and the table below:

Type	H	W	D		Weight
16 DI	$\mathbf{9 2}$	$\mathbf{7 2}$	$\mathbf{7 0}$		137
8 DO	92	72	$\mathbf{7 0}$		151
8 DO-R	92	72	$\mathbf{7 0}$		171
4 DIO-R	92	72	$\mathbf{7 0}$		156
4 DO-R	92	72	$\mathbf{7 0}$		171
8 AI	$\mathbf{9 2}$	$\mathbf{7 2}$	$\mathbf{7 0}$		146
8 AO	$\mathbf{9 2}$	$\mathbf{7 2}$	$\mathbf{7 0}$		158
4DI2DO-R-3P	$\mathbf{9 2}$	$\mathbf{7 2}$	$\mathbf{7 0}$		156

All dimensions in mm, weight in grams
C) Wiring diagrams

Fig. C-1 : romod 16 DI

Fig. C-2 : romod 8 DO

Stever- u. Regels

Important:
The signals to be switched must have the same phasing.

Fig. C-3 : romod 8 DO-R

Stever- u. Rege

Important:
The signals to be switched must have the same phasing.

Fig. C-4 : romod 4 DIO-R

Fig. C-5 : romod 4 DO-R

Fig. C-6 : romod 8 AI

Fig. C-7 : romod 8 AO

Important:

The signals to be switched must have the same phasing.

Abb. C-8 : romod 4DI2DO-R-3P
D) Types and Registers overview

Type: romod...	Description:
16 DI	16 DI rail mounted module, 16x LEDs indicating DI states
8 DO	8 DO rail mounted module, $8 \times$ LEDs indicating DO states, 8 x three-position switches 'Auto-OFF-ON', outputs +24 Volts
8 DO-R	8 DO rail mounted module, $8 \times$ LEDs indicating DO states, $8 x$ three-position switches 'Auto-OFF-ON', relay outputs (NO)
4 DIO-R	4 DI / DO rail mounted module, $4 x$ LEDs indicating DI states, $4 x$ LEDs indicating DO states, $4 x$ three-position switches 'Auto-OFF-ON', relay outputs (NO)
4 DO-R	4 DO rail mounted module, $8 x$ LEDs indicating DO states and manual/automatic operation mode, $4 x$ push button switches, $4 x$ relay outputs (NO), bistable relays
8 Al	8 Al rail mounted module, 8 x LEDs indicating Al states, inputs active ($0 . .10 \mathrm{~V}$) and passive (RTD) configurable
8 AO	8 AO rail mounted module $0 . .10 \mathrm{~V}$, 8 x 2 -positon switches 'Auto-Pot', $8 x$ potentiometers
4DI2DO-R-3P	4 DI / 2x 2 DO (2x 3-point outputs) rail mounted module, $4 x$ LEDs indicating DI states, $4 x$ LEDs indicating DO states, $2 x$ three-position switches 'auto-off-manual', $2 x$ three-position switches 'open-stop-close', relay outputs (NO)

D1 - Overview of Registers 16DI Module

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

R101 ${ }^{(*)}$		Value Hex	Status of Digital Inputs
	DI No.	(DI16 ... DI1)	The bits of this register indicate the current status of the digital inputs. The least significant bit is associated with DI1, followed by the other ones up to DI16.
	1	0001	DI 1
	2	0002	DI 2
	3	0004	DI 3
	4	0008	DI 4
	5	0010	DI 5
	6	0020	DI 6
	7	0040	DI 7
	8	0080	DI 8
	9	0100	DI 9
	10	0200	DI 10
	11	0400	DI 11
	12	0800	DI 12
	13	1000	DI 13
	14	2000	DI 14
	15	4000	DI 15
	16	8000	DI 16

R1100 ${ }^{(*)}$	DI No.	$\underline{\text { Value Hex }}$	Inverting Digital Inputs Using this register, the 16 digital inputs can be inverted individually. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs). The settings of this register are stored in non-volatile memory.
		0000	No DI is inverted
	1	0001	Inverting DI 1
	2	0002	Inverting DI 2
	3	0004	Inverting DI 3
	4	0008	Inverting DI 4
	5	0010	Inverting DI 5
	6	0020	Inverting DI 6
	7	0040	Inverting DI 7
	8	0080	Inverting DI 8
	9	0100	Inverting DI 9
	10	0200	Inverting DI 10
	11	0400	Inverting DI 11
	12	0800	Inverting DI 12
	13	1000	Inverting DI 13
	14	2000	Inverting DI 14
	15	4000	Inverting DI 15
	16	8000	Inverting DI 16

R100 $^{(*)}$		Value Hex	Change flag Digital Inputs
	DI No.	(DI16 ... DI1)	The bits of this register are set when the state of a DI has changed. When the register has been read, all bits are automatically reset to zero. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs).
1	0001	Change of DI 1	
	\ldots	\ldots	\ldots

R1235 ${ }^{(*)}$	DI No.	$\frac{\text { Value Hex }}{\text { (DI16 ... DI1) }}$	Setting the Mask for DI indicating LEDs (red) If the LEDs that are usually indicating the state of the DIs shall be driven by means of bus commands instead, the bits of this register have to be set to 0 . Controlling the LEDs via bus then can be done with the register R1221. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs).
		FF FF	all LEDs are controlled via the input signals of the DIs
	1	FF FE	Driving LED DI 1 (red) via bus command
	...	\ldots	...
	16	7F FF	Driving LED DI 16 (red) via bus command

R1221		Value Hex	Controlling the LEDs (red) via bus command
	DI No.	(DI16 ... DI1)	Prior condition for this mode of operation is that the corresponding bits in the register R1235 are set to 0. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs).
	1	0001	Switching ON LED DI 1 (red)
	\ldots	\ldots	\ldots

R1222 $^{(*)}$		Value Hex	Controlling the LEDs (green) via bus command
	DI No.	(DI16 ... DI1)	Prior condition for this mode of operation is that the corresponding bits in the register R1236 are set to 0. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs).
	1	0001	Switching ON LED DI 1 (green)
	\ldots	$\ldots 0$	\ldots

R1241 ${ }^{(*)}$		Value Hex	LED Color Red when controlled via terminal input
	DI No.	(DI16 ... DI1)	This register determines whether the LED is lit in red color when the corresponding DI is activated via the input terminals. Prior condition is that the corresponding bits in R1235 are set to 1 . Each Dl is assigned to a bit of the register. The assignment corresponds to that of R101 (current status of the digital inputs).
		0000	None of the LEDs lights up in red color when DI is activated
	1	0001	LED DI 1 lights up red when DI 1 is activated via terminal
	16	8000	LED DI 16 lights up red when DI 16 is activated via terminal

R1242 ${ }^{(*)}$		Value Hex	LED Color Green when controlled via terminal
	DI No.	(DI16 ... DI1)	This register determines whether the LED is lit in green color when the corresponding Dl is activated via the input terminals. Prior condition is that the corresponding bits in R1236 are set to 1 . Each Dl is assigned to a bit of the register. The assignment corresponds to that of R101 (current status of the digital inputs).
		FF FF	Every LED lights up in green color when DI is activated
	1	0001	LED DI 1 lights up green when DI 1 is activated via terminal
	16	8000	LED DI 16 lights up green when DI 16 is activated via terminal

R10101		Register	Counter values of the digital inputs
R10116			Each register contains the counter value of a DI. Important: Counters are only suitable for DC signals!
		R 10101	Counter value DI 1
		\ldots	\ldots

R10201 \ldots		$\underline{\text { Register }}$	Prescaler for the counters of the digital inputs
R10216		Each register contains the prescaler of a DI's counter.	
		R 10201	Prescaler of counter DI 1 (R10101)
		\ldots	\ldots

R10051	Register	Counter values (32 Bits) of the digital inputs
		Each two registers contain the 32-bit counter value of a DI (raw value, prescaler has no influence). Important: Counters are only suitable for DC signals! A maximum of 8 values (i.e. 16 registers) may be read with one command!
R10082	R10051 + R10052	Counter value DI 1
	R10081 + R10082	Counter value DI 16

R1101 $^{(*)}$		Value Hex	Delay of the edge detection
	DI No.	(DI16 ... DI1)	This register determines for which inputs the detection of a change of the input signal has to be delayed. This is necessary if the DIs have to be driven with AC. The delay time is set in the register R1111. Each DI is assigned to a bit of the register. The assignment corresponds to that of R101.
		$\mathbf{0 0 0 0}$	None of the DI signals will be delayed
	1	0001	Signal of DI 1 delayed / smoothed
	\ldots	\ldots	\ldots

$\underline{\text { R1111 }}^{(*)}$		Value Dez	Time for the delay of the input signal
		A change of signal which is connected to a DI will be realized only after expiry of this time. The value in the register R1111 multiplied by 10 gives the delay time in milliseconds.	
	$\mathbf{1 0}$	Delay $=\mathbf{1 0 0} \mathbf{~ m s ~ (i f ~ a c t i v a t e d ~ u s i n g ~ R 1 1 0 1) ~}$	
		4	Delay $=40 \mathrm{~ms}$ (minimum recommended for $50 \mathrm{~Hz} \mathrm{AC} \mathrm{signals)}$

D2 - Overview of Registers 8DO and 8DO-R Module

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

R151 ${ }^{(*)}$		Value Hex	Status request of switch position Manually ON
	Switch No.	$($ S8 \ldots S1)	The bits of this register indicate the state 'Manually ON' of the switches. The least significant bit is associated with switch No. 1, followed by the other ones up to switch No. 8.
	1	0001	Switch 1 ON
2	0002	Switch 2 ON	
3	0004	Switch 3 ON	
4	0008	Switch 4 ON	
5	0010	Switch 5 ON	
6	0020	Switch 6 ON	
7	0040	Switch 7 ON	
8	0080	Switch 8 ON	

R152 ${ }^{(*)}$		Value Hex	Status request of switch position AUTO
	Switch No.	(S8 ... S1)	The bits of this register indicate the state 'Auto' of the switches. The least significant bit is associated with switch No. 1, followed by the other ones up to switch No. 8.
	1	0001	Switch 1 AUTO
	2	0002	Switch 2 AUTO
	3	0004	Switch 3 AUTO
	4	0008	Switch 4 AUTO
	5	0010	Switch 5 AUTO
	6	0020	Switch 6 AUTO
	7	0040	Switch 7 AUTO
	8	0080	Switch 8 AUTO

R153 ${ }^{(*)}$		Value Hex	Status request of switch position AUTO and Manually ON in one single register
	Switch No.	(S8 ... S1)	The bits of this register indicate the state 'Auto' and 'Manually ON' of the switches in one single register. The least significant bit of each byte is associated with switch No. 1, followed by the other ones up to switch No. 8. The low byte shows the state 'Auto', and the high byte the state 'Manually ON'.
	1	0001	Switch 1 AUTO

	8	0080	Switch 8 AUTO"
	1	0100	Switch 1 ON
	\ldots		..
	8	8000	Switch 8 ON

R150 ${ }^{(*)}$		Value Hex	Flag indicating a change of switch positions
	Switch No.	(S8 ... S1)	The bits of this register are set when the state of a switch has changed. When the register has been read, all bits are automatically reset to zero. Each switch is assigned to a bit of the register. The assignment corresponds to that of the registers R151 and R152 (current positions of the switches).
	1	0001	Position of switch 1 has changed
	8	0080	Position of switch 8 has changed

R121		Value Hex	Controlling the DOs via bus command
	DO No.	(DO8 .. DO1)	Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R135 (setting the mask for manual override of the DOs)
	1	0001	Activating DO 1
	\ldots	\ldots	\ldots

R111		Value Hex	Current state of the DO
	DO No.	(DO8 .. DO1)	This register shows the current status of each DO, no matter whether a DO is activated via bus command, or manually by using the switch. Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R135 (setting the mask for manual override of the DOs)
	1	0001	State of DO 1
	\ldots	\ldots	\ldots
	0080	State of DO 8	

R2135		Value Hex	Setting the mask for 'Safe State' of the DOs
	DO No.	(DO8 .. DO1)	If it is required that the DOs will have a defined state when the bus fails, the corresponding bits of this register must be set to 1 . Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R121 (Controlling the DOs via bus command). The settings of this register are stored in nonvolatile memory.
		0000	All DOs will retain their last state before bus failure
	1	0001	Setting in R 2121 determines DO 1 when Safe State is triggered
	...	\ldots	...
	8	0080	Setting in R 2121 determines DO 8 when Safe State is triggered

R2121	DO No.	$\underline{\text { Value Hex }}$	Defining the DO's states for the 'Safe State' mode In this register, the states are defined which shall apply for the outputs in case of a failure of the Modbus. The prior condition is that the corresponding bits in register R 2135 are set to 1 . Each digital output is assigned to a bit of the register. The assignment corresponds to that of the register R121 (controlling the DOs via bus command). The settings of this register are stored in nonvolatile memory.
		0000	All DOs will be switched OFF if safe state is triggered
	1	0001	DO 1 will be switched ON when safe state is triggered
	\ldots	\ldots	...
	8	0080	DO 8 will be switched ON when safe state is triggered

R1335 $^{(*)}$		Value Hex	Setting the Mask for DO indicating LEDs (red)
	DO No.	(DO8 .. DO1)	If the LEDs that are usually indicating the state of the DOs shall be driven by means of bus commands instead, the bits of this register have to be set to 0. Controlling the LEDs via bus then can be done with the register R1321. Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R111 (current status of the digital outputs).
		all LEDs (red) automatically show the states of the DOs	
	1	00 FE	Driving LED DO 1 (red) via bus command
	\ldots	\ldots	\ldots

R1336 ${ }^{(*)}$		Value Hex	Setting the Mask for DO indicating LEDs (green)
	DO No.	(DO8 .. DO1)	If the LEDs that are usually indicating the state of the DOs shall be driven by means of bus commands instead, the bits of this register have to be set to 0 . Controlling the LEDs via bus then can be done with the register R1322. Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R111 (current status of the digital outputs).
		00 FF	all LEDs (green) automatically show the states of the DOs
	1	00 FE	Driving LED DO 1 (green) via bus command
	\ldots	\ldots	...
	8	00 7F	Driving LED DO 8 (green) via bus command

R1321			
		Value Hex	Controlling the LEDs (red) via bus command
	DO No.	(DO8 .. DO1)	Prior condition for this mode of operation is that the corresponding bits in the register R1335 are set to 0. Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R111 (current status of the digital outputs).
	1	0001	Switching ON LED DO 1 (red)
	\ldots	\ldots	Switching ON LED DO 8 (red)

R1322 $^{(*)}$		Value Hex	Controlling the LEDs (green) via bus command
	DO No.	(DO8 .. DO1)	Prior condition for this mode of operation is that the corresponding bits in the register R1336 are set to 0. Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R111 (current status of the digital outputs).
	1	0001	Switching ON LED DO 1 (green)
	\ldots	\ldots	\ldots

R1341 $^{(*)}$		Value Hex	LED Color Red when activated automatically with DO
	DO No.	(DO8 .. DO1)	This register determines whether the LED is lit in red color when the corresponding DO is activated. Prior condition is that the corresponding bits in the register R1335 are set to 1. Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R111 (current status of the digital outputs).
		$\mathbf{0 0 0 0}$	None of the LEDs lights up in red color when DO is activated
	\ldots	0001	LED DO 1 lights up red when DO 1 is activated
	\ldots	\ldots	LED DO 8 lights up red when DO 1 is activated

R1342 $^{(*)}$		Value Hex	LED Color Green when activated automatically with DO
	DO No.	(DO8 .. DO1)	This register determines whether the LED is lit in green color when the corresponding DO is activated. Prior condition is that the corresponding bits in the register R1336 are set to 1. Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R111 (current status of the digital outputs).
		$\mathbf{0 0 ~ F F}$	Every LED lights up in green color when corresponding DO is activated
	1	0001	LED DO 1 lights up green when DO 1 is activated
	\ldots	\ldots	\ldots

D3 - Overview of Registers 4DIO-R Module

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

Digital Outputs:

R151 ${ }^{(*)}$		Value Hex	Status request of switch position Manually ON
	Switch No.	$(\mathrm{S4} \ldots \mathrm{~S} 1)$	The bits of this register indicate the state 'Manually ON' of the switches. The least significant bit is associated with switch No. 1, followed by the other ones up to switch No. 4.
	1	0001	Switch 1 ON
	2	0002	Switch 2 ON
	3	0004	Switch 3 ON

R152 ${ }^{(*)}$		Value Hex	Status request of switch position AUTO
	Switch No.	$(\mathrm{S} 4 \ldots \mathrm{~S} 1)$	The bits of this register indicate the state 'Auto' of the switches. The least significant bit is associated with switch No. 1, followed by the other ones up to switch No. 4.
	1	0001	Switch 1 AUTO
	\ldots	0008	Switch 4 AUTO

R150 $^{(*)}$		Value Hex	Flag indicating a change of switch positions
	Switch No.	$(\mathrm{S} 4 \ldots \mathrm{~S} 1)$	The bits of this register are set when the state of a switch has changed. When the register has been read, all bits are automatically reset to zero. Each switch is assigned to a bit of the register. The assignment corresponds to that of the registers R151 and R152 (current positions of the switches).
	1	0001	Position of switch 1 has changed
	\ldots	\ldots	\ldots

R121		Value Hex	Switching the DOs via bus command
	DO No.	(DO4 .. DO1)	Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R135. The respective DO must not be configured as permanently tracking the status of a DI in the registers R2001 ... R2004 (bits 9-12), otherwise control via bus is not possible.
	1	0001	Switching on DO 1
	\ldots	\ldots	\ldots
	4	0008	Switching on DO 4

R122		Value Hex	Toggling the DOs via bus command
	DO No.	(DO4 .. DO1)	Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R135. The respective DO must not be configured as permanently tracking the status of a DI in the registers R2001 ... R2004 (bits 9-12), otherwise control via bus is not possible.
	1	0001	Toggling of DO1
	\ldots	\ldots	\ldots

R111		Value Hex	Current state of the DO
	DO No.	(DO4 .. DO1)	This register shows the current status of each DO, no matter whether a DO is activated via bus command, or manually by using the switch. Each DO is assigned to a bit of the register.
	1	0001	State of DO 1
	\ldots	\ldots	\ldots

$\frac{\text { R2001 }}{\text { (DO1) }}$		Value Hex	Mask for coupling a DO to the status of a Dl
$\frac{\mathrm{R} 2004}{(\mathrm{DO})}$	Bit No.		If the DOs are to follow the status of certain DIs, the corresponding bits must be set in this register. If all the bits are set to 0 , the states of the DIs take no effect on the DO. For each DI , one bit is assigned for toggling and one for static control. If the DOs are configured so that they permanently will follow the status of a DI (bits 9-12), the DOs can no longer be controlled via Modbus.
		0000	DI's status takes no effect on the DOs
	1	0001	DO x will be toggled by activating DI1
	2	0002	DO \times will be toggled by activating DI2
	3	0004	DO \times will be toggled by activating DI3
	4	0008	DO \times will be toggled by activating DI4
	9	0100	DO \times will assume the same state as DI1
	10	0200	DO \times will assume the same state as DI2
	11	0400	DO \times will assume the same state as DI3
	12	0800	DO \times will assume the same state as DI4

R3501		Value Hex	Mask for interlocking DO 1 against other DOs
	Bit No.		If DO1 has to be interlocked against other DOs, the corresponding bits must be set in this register. DOs configured here will take priority over DO1. A cross-over interlock has to be avoided. If, in contrast, all bits are set to 0 , the states of the other DOs do not affect this DO.
		0000	Other DOs will not affect DO 1
	1	0001	Value not valid for DO 1
	2	0002	DO 1 will be interlocked by activating DO 2
	3	0004	DO 1 will be interlocked by activating DO 3
	4	0008	DO 1 will be interlocked by activating DO 4

R3502		Value Hex	Mask for interlocking DO 2 against other DOs
	Bit No.		Same as register R3501, but settings for DO 2.
		0000	Other DOs will not affect DO 2
	1	0001	DO 2 will be interlocked by activating DO 1
	2	0002	Value not valid for DO 2
	3	0004	DO 2 will be interlocked by activating DO 3
	4	0008	DO 2 will be interlocked by activating DO 4

R3503		Value Hex	Mask for interlocking DO 3 against other DOs
	Bit No.		Same as register R3501, but settings for DO 3.
		$\mathbf{0 0 0 0}$	Other DOs will not affect DO 3
	1	0001	DO 3 will be interlocked by activating DO 1
	2	0002	DO 3 will be interlocked by activating DO 2
	3	0004	Value not valid for DO 3
	4	0008	DO 3 will be interlocked by activating DO 4

R3504		Value Hex	Mask for interlocking DO 4 against other DOs
	Bit No.		Same as register R3501, but settings for DO 4.
		$\mathbf{0 0 0 0}$	Other DOs will not affect DO 4
	1	0001	DO 4 will be interlocked by activating DO 1
	2	0002	DO 4 will be interlocked by activating DO 2
	3	0004	DO 4 will be interlocked by activating DO 3
	4	0008	Value not valid for DO 4

R3201		Register	Switch-on delay for digital outputs
\ldots			Each register contains the value of the switching-on delay of a digital output (in milliseconds) R3204
		R 3201	Important: The delay is only effective when controlling the output via Modbus commands, not with manual override!
		\ldots	Switch-on delay concerning DO 1
		R 3204	Switch-on delay concerning DO 4

$\underline{\text { R3211 }}$		Register	Switch-off delay for digital outputs
\ldots		Each register contains the value of the switching-off delay of a digital output (in milliseconds) Important: The delay is only effective when controlling the output via Modbus commands, not with manual override!	
		R3211	Switch-off delay concerning DO 1
		\ldots	\ldots

$\underline{\text { R3101 }}$		Register	Minimum time for state 'off' before switching on a digital output again
R3104		Each register contains the value of the minimum time for the state 'off' before a digital output can be switched on again (in milliseconds) Important: The delay is only effective when controlling the output via Modbus commands, not with manual override!	
		R3101	Minimum time for state 'off' (DO 1)
		R 3104	Minimum time for state 'off' (DO 4)

R3111		Register	Minimum time for state 'on' before switching off a digital output again
\ldots			Each register contains the value of the minimum time for the state 'on' before a digital output can be switched off again (ms). Important: The delay is only effective when controlling the output via Modbus commands, not with manual override!
		R3111	Minimum time for state 'on' (DO 1)
		\ldots	\ldots
		R3114	Minimum time for state 'on' (DO 4)

R2135		Value Hex	Setting the mask for 'Safe State' of the DOs
	DO No.	(DO4 .. DO1)	If it is required that the DOs will have a defined state when the bus fails, the corresponding bits of this register must be set to 1 . Each DO is assigned to a bit of the register. The settings of this register are stored in non-volatile memory.
		0000	All DOs will retain their last state before bus failure
	1	0001	Setting in R 2121 determines DO 1 when Safe State is triggered
	\ldots	\ldots	...
	4	0008	Setting in R 2121 determines DO 4 when Safe State is triggered

R2121		$\underline{\text { Value Hex }}$	Defining the DO's states for the 'Safe State' mode
	DO No.	$($ DO4 .. DO1)	In this register, the states are defined which shall apply for the outputs in case of a failure of the Modbus. The prior condition is that the corresponding bits in register R 2135 are set to 1. Each digital output is assigned to a bit of the register. The settings of this register are stored in non-volatile memory.
		0000	All DOs will be switched OFF if safe state is triggered
	1	0001	DO 1 will be switched ON when safe state is triggered
	4	0008	DO 4 will be switched ON when safe state is triggered

Digital Inputs:

R101 ${ }^{(*)}$		Value Hex	Status of Digital Inputs
	DI No.	(DI4 ... DI1)	The bits of this register indicate the current status of the digital inputs. The least significant bit is associated with DI1, followed by the other ones up to DI4.
	1	0001	DI 1
	2	0002	DI 2
	3	0004	DI 3
	4	0008	DI 4

R1100 ${ }^{(*)}$	DI No.	Value Hex	Inverting Digital Inputs Using this register, the 4 digital inputs can be inverted individually. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs). The settings of this register are stored in non-volatile memory.
		0000	No DI is inverted
	1	0001	Inverting DI 1
	2	0002	Inverting DI 2
	3	0004	Inverting DI 3
	4	0008	Inverting DI 4

R100	(*)	Value Hex	Change flag Digital Inputs
	DI No.	(DI4 ... DI1)	The bits of this register are set when the state of a DI has changed. When the register has been read, all bits are automatically reset to zero. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs).
	1	0001	Change of DI 1
	\ldots	\ldots	\ldots

R10101		Register	Counter values of the digital inputs
R10104			Each register contains the counter value of a DI. Important: Counters are only suitable for DC signals!
		R 10101	Counter value DI 1
		\ldots	\ldots

R10201		Register	Prescaler for the counters of the digital inputs
R10204			Each register contains the prescaler of a Dl's counter.
		R 10201	Prescaler of counter DI 1 (R10101)
		\ldots	\ldots

R10051	Register	Counter values (32 Bits) of the digital inputs
		Each two registers contain the 32-bit counter value of a DI (raw value, prescaler has no influence). Important: Counters are only suitable for DC signals!
R10058	R10051 + (R10052)	Counter value DI 1
	R10057 + (R10058)	Counter value DI 4

R1101 ${ }^{(*)}$		Value Hex	Delay of the edge detection
	DI No.	(DI4 ... DI1)	This register determines for which inputs the detection of a change of the input signal has to be delayed. This is necessary if the DIs have to be driven with AC. The delay time is set in the register R1111. Each DI is assigned to a bit of the register. The assignment corresponds to that of R101.
		0000	None of the DI signals will be delayed
	1	0001	Signal of DI 1 delayed / smoothed
	,		
	4	0008	Signal of DI 4 delayed / smoothed

$\underline{\text { R1111 }}^{(*)}$		Value Dec	Time for the delay of the input signal
			A change of signal which is connected to a DI will be realized only after expiry of this time. The value in the register R1111 multiplied by 10 gives the delay time in milliseconds.
		$\mathbf{1 0}$	Delay $=\mathbf{1 0 0} \mathbf{~ m s ~ (i f ~ a c t i v a t e d ~ u s i n g ~ R 1 1 0 1) ~}$
		4	Delay $=\mathbf{4 0} \mathrm{ms}$ (minimum recommended for $50 \mathrm{~Hz} \mathrm{AC} \mathrm{signals)}$

LEDs:

R1336 ${ }^{(*)}$		Value Hex	Setting the Mask for DI / DO indicating LEDs (green)
	$\begin{gathered} \hline \text { DI / DO } \\ \text { No. } \end{gathered}$		If the LEDs that are usually indicating the state of the DIs and DOs shall be driven by means of bus commands instead, the bits of this register have to be set to 0 . Controlling the LEDs via bus then can be done with the register R1322. Each DI and DO is assigned to a bit of the register.
		00 FF	all LEDs (green) automatically show the states of DIs and DOs
	DO 1	00 FE	Driving LED DO 1 (green) via bus command
	DO 2	00 FD	Driving LED DO 2 (green) via bus command
	DO3	00 FB	Driving LED DO 3 (green) via bus command
	DO 4	00 F7	Driving LED DO 4 (green) via bus command
	DI 1	00 EF	Driving LED DI 1 (green) via bus command
	DI 2	00 DF	Driving LED DI 2 (green) via bus command
	DI 3	00 BF	Driving LED DI 3 (green) via bus command
	DI 4	00 7F	Driving LED DI 4 (green) via bus command

R1321*)	$\begin{aligned} & \text { DI-/DO- } \\ & \text { No. } \end{aligned}$	Value Hex	Controlling the LEDs (red) via bus command Prior condition for this mode of operation is that the corresponding bits in the register R1335 are set to 0 . Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R1335 (Setting the Mask for DI / DO indicating LEDs red).
	DO 1	0001	Switching ON LED DO 1 (red)
	DO 4	0008	Switching ON LED DO 4 (red)
	DI 1	0010	Switching ON LED DI 1 (red)
	DI 4	0080	Switching ON LED DI 4 (red)

R1322 ${ }^{(*)}$		Value Hex	Controlling the LEDs (green) via bus command
	$\begin{gathered} \text { DI-/DO- } \\ \text { No. } \end{gathered}$		Prior condition for this mode of operation is that the corresponding bits in the register R1336 are set to 0 . Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R1336 (Setting the Mask for DI / DO indicating LEDs green).
	DO 1	0001	Switching ON LED DO 1 (green)
	\ldots		\ldots...
	DO 4	0008	Switching ON LED DO 4 (green)
	DI 1	0010	Switching ON LED DI 1 (green)
	\ldots		...
	DI 4	0080	Switching ON LED DI 4 (green)

$\mathrm{R1342}^{(*)}$		Value Hex	LED Color Green when activated automatically with DI / DO
	$\begin{gathered} \text { DI-/DO- } \\ \text { No. } \end{gathered}$		This register determines whether the LED is lit in green color when the corresponding DI / DO is activated. Prior condition is that the corresponding bits in the register R1336 are set to 1 . Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R1336 (Setting the Mask for DI / DO indicating LEDs green).
	DO 1	0001	LED DO 1 lights up green when DO 1 is activated
	\ldots		\ldots
	DO 4	0008	LED DO 4 lights up green when DO 4 is activated
	DI 1	0010	LED DI 1 lights up green when DI 1 is activated
	...		\ldots...
	DI 4	0080	LED DI 4 lights up green when DI 4 is activated

D4 - Overview of Registers 4DO-R Module

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

R170		Value Hex	Status of push buttons being pressed
	Push Button No.	(PB4 ... PB1)	The bits of this register indicate the state 'button currently being pressed' of the four push buttons. The least significant bit is associated with button No. 1, followed by the other ones up to button No. 4.
	1	0001	Button 1 currently being pressed
2	0002	Button 2 currently being pressed	
3	0004	Button 3 currently being pressed	
	4	0008	Button 4 currently being pressed

R151 ${ }^{(*)}$		Value Hex	Status of channel mode 'Manually ON'
	Channel No.	(Ch4 ... Ch1)	The bits of this register indicate that one or more channels are switched manually ON. The least significant bit is associated with channel No. 1, followed by the other ones up to channel 4.
	1	0001	Channel 1 manually ON
	2	0002	Channel 2 manually ON
	3	0004	Channel 3 manually ON
	4	0008	Channel 4 manually ON

R152 ${ }^{\text {(*) }}$		Value Hex	Status request of channel mode AUTO
	Channel No.	(Ch4 ... Ch1)	The bits of this register indicate the operation mode 'Auto' of the four channels. The assignment corresponds to that of the register R170. Important: The register can also be written, so that the channels can be brought back into automatic mode also by bus command from a higher-level system.
	1	0001	Channel 1 AUTO
	2	0002	Channel 2 AUTO
	3	0004	Channel 3 AUTO

R153 $^{(*)}$		Value Hex	Status request of channel mode AUTO + Value
	Channel No.	(Ch4 ... Ch1)	The bits in the Low Byte of this register indicate the operation mode 'Auto' of the four channels. In the high byte, the value of the output is displayed when the mode 'manually overridden' is set, or, respectively, which status the output will assume when it will be switched from automatic to manually overridden (the last value during the manual operation mode is stored in the volatile memory). The assignment corresponds to that of the register R170 (current state of the push buttons being pressed).
	1	0001	Channel 1 AUTO
2	0002	Channel 2 AUTO	
	0004	Channel 3 AUTO	

R150	(*)	Value Hex	Flag indicating that push buttons have been pressed
	Push Button No.	(PB4 ... PB1)	The bits of this register are set when a push button has been pressed. When reading the register, all bits are automatically reset to zero. Each push button is assigned to a bit of the register. The least significant bit is associated with push button No. 1, followed by the other ones up to push button No. 4.
	1	0001	Status of push button 1 has changed
	2	0002	Status of push button 2 has changed
	3	0004	Status of push button 3 has changed

R10170	Value Hex	Time for prolonged pushing a button	Changing from the operating mode 'automatic' to 'manual' and back is done by holding down the push button of the respective channel for a defined time. This time is set by the value in this register for all four channels of the module. The time in the register R 10170 is given decimal in tenths of a second.

R10173	Channel No.	$\frac{\text { Value Hex }}{\text { (Ch4 ... Ch1) }}$	Default operating mode 'Automatic' After a cold start or reset, the settings in this register determine whether the channels are started in the 'Automatic' mode. The assignment corresponds to that of the register R170 (current state of the push buttons being pressed).
		0015	all channels will start in AUTO mode
	1	0001	only channel 1 will start in AUTO mode
	2	0002	only channel 2 will start in AUTO mode
	3	0004	only channel 3 will start in AUTO mode
	4	0008	only channel 4 will start in AUTO mode

R10411		Value Hex	Delay time between switching of two outputs Using this register, a delay time can be defined which must elapse between the switching of two outputs at least. Thus, the system perturbations resulting from the switching operations can be reduced. The time is given decimal in hundredths of a second.
		$\mathbf{1 0}$	Delay time $=\mathbf{1 0 0} \mathbf{~ m s}$

R121		Value Hex	Controlling the DOs via bus command
	DO No.	(DO4 .. DO1)	Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R135 (setting the mask for manual override of the DOs)
	1	0001	Activating DO 1
	\ldots	\ldots	\ldots

R111		Value Hex	Current state of the DO
	DO No.	(DO4 .. DO1)	This register shows the current status of each DO, no matter whether a DO is activated via bus command, or manually by using the push button. Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R135 (setting the mask for manual override of the DOs)
	1	0001	State of DO 1
	\ldots	\ldots	\ldots

R2135	DO No.	$\underline{\text { Value Hex }}$	Setting the mask for 'Safe State' of the DOs If it is required that the DOs will have a defined state when the bus fails, the corresponding bits of this register must be set to 1 . Each DO is assigned to a bit of the register. Each DO is assigned to a bit of the register. The assignment corresponds to that of the register R135 (setting the mask for manual override of the DOs). The settings of this register are stored in nonvolatile memory.
		0000	All DOs will retain their last state before bus failure
	1	0001	Setting in R 2121 determines DO 1 when Safe State is triggered
	\ldots
	4	0008	Setting in R 2121 determines DO 4 when Safe State is triggered

R1335 ${ }^{(*)}$		Value Hex	Setting the Mask for DO indicating LEDs (red)
	DO No.	(DO8 .. DO1)	If the LEDs that are usually indicating the state of the DOs and manual override shall be driven by means of bus commands instead, the bits of this register have to be set to 0 . Controlling the LEDs via bus then can be done with the register R1321. The least significant bit is associated with LED 1, followed by the other ones up to LED 8.
		0000	Driving LEDs of all DOs (red) via bus command
		00 FF	all LEDs (red) automatically show the states of the DOs
	1	00 FE	Driving LED DO 1 (red) via bus command
	2	00 FD	Driving LED DO 2 (red) via bus command
	3	00 FB	Driving LED DO 3 (red) via bus command
	4	00 F7	Driving LED DO 4 (red) via bus command
	5	00 EF	Driving LED DO 5 (red) via bus command
	6	00 DF	Driving LED DO 6 (red) via bus command
	7	00 BF	Driving LED DO 7 (red) via bus command
	8	00 7F	Driving LED DO 8 (red) via bus command

R1336 ${ }^{(*)}$	DO No.	$\frac{\text { Value Hex }}{\text { (DO8 .. DO1) }}$	Setting the Mask for DO indicating LEDs (green) If the LEDs that are usually indicating the state of the DOs shall be driven by means of bus commands instead, the bits of this register have to be set to 0 . Controlling the LEDs via bus then can be done with the register R1322. Each DO is assigned to a bit of the register. The assignment corresponds to that of R1335.
		00 FF	all LEDs (green) automatically show the states of the DOs
	1	00 FE	Driving LED DO 1 (green) via bus command
	\ldots
	8	00 7F	Driving LED DO 8 (green) via bus command

R1321		Value Hex	Controlling the LEDs (red) via bus command
	LED No.	(LED 8 .. 1)	Prior condition for this mode of operation is that the corresponding bits in the register R1335 are set to 0. The least significant bit is associated with LED 1, followed by the other ones up to LED 8.
	1	0001	Switching ON DO LED 1 (red)
	\ldots	\ldots	\ldots

R1322*)		Value Hex	Controlling the LEDs (green) via bus command
	LED No.	(LED 8 .. 1)	Prior condition for this mode of operation is that the corresponding bits in the register R1336 are set to 0. Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R1321 (Controlling the LEDs (green) via bus command).
	1	0001	Switching ON DO LED 1 (green)
	\ldots	\ldots	\ldots
	8	0080	Switching ON DO LED 8 (green)

$\underline{\text { R1341 }}^{(*)}$		Value Hex	LED Color Red when activated automatically with DO
	LED No.	(LED 8 .. 1)	This register determines whether the LED is lit in red color automatically with the DO (state and autooverride indication). Prior condition is that the corresponding bits in the register R1335 are set to 1. Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R1321 (Controlling the LEDs (red) via bus command).
		$\mathbf{0 0 ~ 0 0}$	None of the LEDs lights up red automatically with DO
1	0001	DO LED 1 lights up red automatically with DO	
\ldots	\ldots	\ldots	
8	0080	DO LED 8 lights up red automatically with DO	

R1342 $^{(*)}$	Value Hex	LED Color Green when activated automatically with DO	
	LED No.	(LED 8 .. 1)	This register determines whether the LED is lit in green color automatically with the DO (state and autooverride indication). Prior condition is that the corresponding bits in the register R1336 are set to 1. Each LED is assigned to a bit of the register. The assignment corresponds to that of the register R1322 (Controlling the LEDs (green) via bus command).
		$\mathbf{0 0 ~ F F}$	Every LED lights up in green color automatically with DO
1	0001	DO LED 1 lights up green automatically with DO	
\ldots	\ldots	\ldots	
8	0080	DO LED 8 lights up green automatically with DO	

D5 - Overview of Registers 8AI Module

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

R501		Register	Values of the analog inputs
			Each register contains the value of an analog input. Important: The values read from these registers should be handled as SINT (signed integer), because depending on the configured sensor type, the characteristics of the sensor is already taken into account and the measurement can lead to the display of negative values (below 0° C).
		R501	Value of Al 1
		\ldots	\ldots
		R 508	Value of AI 8

R500 ${ }^{(*)}$		Value Hex	Flag indicating a change at analog inputs
	Input No.	(Al8 ... Al1)	The bits of this register are set when the value of an analog input has changed by more than the value of the delta determined in registers R1591...R1598. When the register has been read, all bits are automatically reset to zero. Each analog input is assigned to a bit of the register. The least significant bit is associated with analog input No. 1, followed by the other ones up to analog input No. 8.
	1	0001	Change of value at analog input AI 1
	2	0002	Change of value at analog input AI 2
	3	0004	Change of value at analog input AI 3
	4	0008	Change of value at analog input AI 4
	5	0010	Change of value at analog input AI 5
	6	0020	Change of value at analog input AI 6
	7	0040	Change of value at analog input AI 7
	8	0080	Change of value at analog input AI 8

R1591	Register	Delta value for the analog inputs
R1598		Each register contains the value by which an analog input has to change, in order that the change will be indicated by the flag in register R500. The value of Delta is of the same dimension as the analog value itself (R501 ... R508). If Delta is zero, the changing flag never will be set.
	R 1591	Delta value for the analog input Al 1
	\ldots	...
	R 1598	Delta value for the analog input AI 8

$\begin{aligned} & \frac{\mathrm{R} 1501}{\ldots} \\ & \mathrm{R} 1508 \\ & \hline \end{aligned}$	Register	Types of sensors connected to the analog inputs	
		Each register contains the type of sensor which is connected to an analog input, e.g. $0 . .10 \mathrm{~V}$ or Pt1000	
	R 1501	Type of sensor Al 1	
	R 1508	Type of sensor Al 8	
		Valid values:	Units of measured values:
		$0=0 \ldots 10 \mathrm{~V}$	mV (1000 = 1 V $)$
		$2=$ Resistance 0... $5 \mathrm{k} \Omega$	$\Omega / 10(1000=100.0 \Omega)$
		3 = Resistance $0 . . .15 \mathrm{k} \Omega$	$\Omega(1000=1000 \Omega)$
		$4=$ in preparation	
		$5=\mathrm{Pt} 100$	${ }^{\circ} \mathrm{C} / 10\left(1000=100.0^{\circ} \mathrm{C}\right)$
		$6=$ Pt 1000	${ }^{\circ} \mathrm{C} / 10\left(1000=100.0^{\circ} \mathrm{C}\right)$
		$7=$ Ni 1000	${ }^{\circ} \mathrm{C} / 10\left(1000=100.0^{\circ} \mathrm{C}\right)$
		$8=\mathrm{Ni} 1000$ L\&G	${ }^{\circ} \mathrm{C} / 10\left(1000=100.0^{\circ} \mathrm{C}\right)$
		9 = KTY81-110	${ }^{\circ} \mathrm{C} / 10$ ($1000=100.0^{\circ} \mathrm{C}$)
		$10=$ KTY81-210	${ }^{\circ} \mathrm{C} / 10\left(1000=100.0^{\circ} \mathrm{C}\right)$
		11 = NTC 20k	${ }^{\circ} \mathrm{C} / 10\left(1000=100.0^{\circ} \mathrm{C}\right)$
		$12=$ NTC 10k	${ }^{\circ} \mathrm{C} / 10\left(1000=100.0^{\circ} \mathrm{C}\right)$
		$50=$ KP10 / LM235	${ }^{\circ} \mathrm{C} / 10\left(1000=100,0^{\circ} \mathrm{C}\right)$

D6 - Overview of Registers 8AO Module

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

R150 $^{(*)}$		Value Hex	Flag indicating a change of switch positions
	Switch No.	$($ S8 \ldots S1)	The bits of this register are set when the state of a switch has changed. When the register has been read, all bits are automatically reset to zero. Each switch is assigned to a bit of the register. The assignment corresponds to that of the register R152 (current positions of the switches).
	1	0001	Position of switch 1 has changed
	\ldots	\ldots	\ldots

$\mathbf{R 1 6 0}^{(*)}$		Value Hex	Flag indicating a change of potentiometer's setting values
	Poti No.	(P8 ... P1)	The bits of this register are set when the setting value of a potentiometer has changed. When the register has been read, all bits are automatically reset to zero. Each potentiometer is assigned to a bit of the register. The assignment corresponds to that of the register R152 (current positions of the switches).
	1	0001	Setting value potentiometer 1 has been changed
	\ldots	\ldots	\ldots

R161		Register	Setting values of the potentiometers
R168			Each register contains the setting value of a potentiometer (Range of values 0...1000)
		R 161	Setting value potentiometer 1
		\ldots	\ldots

R521		Register	Controlling the AOs via bus command
R528			Each register contains the control value of an analog output (values 0 ... 1000 correspond to 0 ... 10V)
		R 521	Control value for AO 1
		\ldots	\ldots

R511		Register	Actual values of the AO
R518		Each register contains the actual value of an analog output	
		R 511	Actual value of AO 1
		\ldots	\ldots

$\underline{\text { R2535 }}$	AO No.	$\begin{aligned} & \hline \text { Value Hex } \\ & \hline \text { (AO8 .. AO1) } \end{aligned}$	Setting the mask for 'Safe State' of the AOs If it is required that the AOs will have a defined value when the bus fails, the corresponding bits of this register must be set to 1 Each AO is assigned to a bit of the register. The assignment corresponds to that of the register R152 (current positions of the switches). The settings of this register are stored in non-volatile memory.
		0000	All AOs will retain their last value before bus failure
	1	0001	Value in R 2521 will determine AO 1 when safe state is triggered
	8	0080	Value in R 2528 will determine AO 8 when safe state is triggered

R2521	Register	Defining the AO's values for the 'Safe State' mode
$\underline{R 2528}$		When the Modbus fails, the outputs will assume the values that are set in these registers. Prior condition for this mode of operation is that the corresponding bits in the register R2535 are set to 1 . Each register contains the control value of one AO. The settings of this registers are stored in non-volatile memory.
	R 2521	Safe state value for AO 1 (values $0 \ldots 1000 \equiv 0 \ldots 10 \mathrm{~V}$)
	R 2528	Safe state value for AO 8 (values $0 . .1000 \equiv 0 \ldots 10 \mathrm{~V}$)

D7 - Overview of Registers 4DI2DO-R-3P Module

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

Digital Outputs:

R151 ${ }^{(*)}$		Value Hex	Status request of switch position 'Man.ON' / 'UP'
	Switch No.	(S4... S1)	The bits of this register indicate whether the switches are in the upper position, i.e. the 'manual override ON' state (switches 1 and 3) or the 'UP' position (switches 2 and 4). The least significant bit is associated with switch No. 1, followed by the other ones up to switch No. 4.
	1	0001	Switch 1 (channel 1) ,manually overridden ON*
	2	0002	Switch 2 (channel 1) ,UP‘
	3	0004	Switch 3 (channel 2) ,manually overridden ON*
	4	0008	Switch 4 (channel 2) ,UP‘

R152 ${ }^{(*)}$		Value Hex	Status request of switch position AUTO
	Switch No.	(S4... S1)	The bits of this register indicate whether the switches are in the lower position, i.e. the 'auto mode' state (switches 1 and 3) or the 'DOWN' position (switches 2 and 4). The least significant bit is associated with switch No. 1, followed by the other ones up to switch No. 4.
	1	0001	Switch 1 (channel 1) ,auto mode‘
	2	0002	Switch 2 (channel 1) ,DOWN*
	3	0004	Switch 3 (channel 2) ,auto mode‘
	4	0008	Switch 4 (channel 2) ,DOWN ${ }^{\text {¢ }}$

R153 ${ }^{(*)}$	Switch No.	Value Hex (S4 ... S1)	Status request of switch position AUTO and Manually ON in one single register The bits of this register indicate whether the switches are in the upper position (i.e. the 'manual override ON' state or the 'OPEN' position, or in the lower position ('auto mode' or 'CLOSE'). The least significant bit of each byte is associated with switch No. 1, followed by the other ones up to switch No. 4. The low byte shows the state 'Auto'/'Close', and the high byte the state 'Manually ON'/'Open'.
	1	0001	Switch 1 (channel 1) ,auto mode‘
	\ldots		Switch 2 (channel 1) ,DOWN ${ }^{\text {c }}$
	\ldots		Switch 3 (channel 2) ,auto mode‘
	4	0008	Switch 4 (channel 2) ,DOWN ${ }^{\text {c }}$
	1	0100	Switch 1 (channel 1), manually overridden ON
	...		Switch 2 (channel 1) , UP‘
	\ldots		Switch 3 (channel 2) ,manually overridden ON
	4	0800	Switch 4 (channel 2) ,UP‘

R150 ${ }^{(*)}$		Value Hex	Flag indicating a change of switch positions
	Switch No.	$(\mathrm{S} 4 \ldots \mathrm{~S} 1)$	The bits of this register are set when the state of a switch has changed. When the register has been read, all bits are automatically reset to zero. Each switch is assigned to a bit of the register. The assignment corresponds to that of the registers R151 and R152 (current positions of the switches).
	1	0001	Position of switch 1 has changed
	\ldots	\ldots	\ldots

R111		Value Hex	Current state of the DO
	DO No.	(DO4 .. DO1)	This register shows the current status of each DO, no matter whether a DO is activated via bus command, or manually by using the switch. Each DO is assigned to a bit of the register.
	1	0001	State of DO 1
	\ldots	\ldots	\ldots

R1800			
$* *$ R1801		Register	Target position in \%
			Each register contains the target position for a blind in \%.
		R 1800	Target position for blind 1 (value in \%)
	R 1801	Target position for blind 2 (value in \%)	

$\begin{aligned} & \mathrm{R}_{\mathrm{R1820}}{ }^{(*)}, \\ & \mathrm{R1821}^{(*)} \end{aligned}$	Value Hex	Status request of channels 1 and 2
		Reading this register shows the current status of each DO. Furthermore, by sending a Modbus command, an initial run (open or close) can be triggered.
	0000	normal operation
	0010	manually overridden, holding position
	0011	manually overridden, open
	0012	manually overridden, close
	0041	Delay time for switching the drive on again is active
	0042	Delay time for switching the drive to the other direction is active
	0080	Signaling that initial run is active
	0081	Command for initial run to 0\% (write command only)
	0082	Command for initial run to 100\% (write command only)

$\begin{aligned} & \text { R1830 }{ }^{(*)}, \\ & \text { R1831 } \end{aligned}$	Value Hex	Status request of operation, channels 1 and 2
		This register shows the current operation of each DO. A value is assigned to each state.
	0000	Holding position
	0001	Open
	0002	Close

$\begin{aligned} & \text { R1840 }^{(*)}, \\ & \text { R1841(*) } \end{aligned}$	Register	Aktual position in \%
		Each register shows the current position of a blind (\%).
	R 1840	Current position of blind 1 in \%
	R 1841	Current position of blind 2 in \%

R1890 R1891			
R土) $^{(*)}$		Register	Current timer value of motion, blind 1 and 2
		Each register shows the current timer value of the motion of a blind. After the drive has come to a halt, the value remains in the register until a new motion is triggered and the timer starts at 0 again.	
		R 1890	Current timer value of motion, blind 1

R1900		Value Hex	Setting the mask for enabling the channels
	Jal. No.	(Jal.2 .. Jal.1)	
		00 FF	Both blinds can be switched on, via Modbus command and also using the switches on the module, as well.
	1	0001	Only blind 1 can be switched
	2	0002	Only blind 2 can be switched

R1910 ${ }^{(*)}$	Register	Prescaler for the timers
$\underline{\mathrm{R} 1911}^{(*)}$		Each register contains the prescaler value for a channel's timers. This value acts as a factor for all times. The default setting is 10 ; with this setting all runtimes are treated as seconds. Increasing or reducing the timer's prescaler stretches all times by the corresponding factor. Example: If this prescaler is set to 1 instead of 10 , all times must be entered in tenths of a second instead of seconds. In this way, however, greater positioning accuracy can be achieved, especially with short runtimes.
	10	If a value of 10 is set, all configured times correspond to the unit seconds
	R 1910	Prescaler value for timers blind 1
	R 1911	Prescaler value for timers blind 2

$\mathbf{R 1 9 2 0}^{(*)}$		Register	Runtime 'Open'
$\boldsymbol{R 1 9 2 1}^{(*)}$		Each register contains the value of how long the opening runtime should be for a blind	
		60	
		R 1920	Opening runtime for blind 1

R1930 ${ }^{(*)}$	Register	Runtime 'Close'
R1931 ${ }^{(*)}$		Each register contains the value of how long the closing runtime should be for a blind
	60	
	R 1930	Closing runtime for blind 1
	R 1931	Closing runtime for blind 2

$\boldsymbol{R 1 9 4 0}^{(*)}$		Register	Additional runtime for direction OPEN
			Each register contains the value by how much the set opening runtime shall be extended when moving a blind to the 100\% position (fully open).
$\boldsymbol{R 1 9 4 1}^{(*)}$		$\boldsymbol{0}$	
		R 1940	Additional runtime (open) for blind 1
		R 1941	Additional runtime (open) for blind 2

R1950 ${ }^{(*)}$	Register	Additional runtime for direction CLOSE
R1951 ${ }^{(*)}$		Each register contains the value by how much the set closing runtime shall be extended when moving a blind to the 0\% position (fully closed).
	0	
	R 1950	Additional runtime (close) for blind 1
	R 1951	Additional runtime (close) for blind 2

$\frac{R 1970}{\ldots}$$\underline{R 1971}{ }^{(*)}$	Register	Delay time OFF \rightarrow ON
		Each register contains the value of how long the delay time (halt) shall be before a blind's motion can be activated again
	2	
	R 1970	Delay time for switching on again blind 1
	R 1971	Delay time for switching on again blind 2

$\begin{aligned} & \frac{\mathrm{R1980}}{}{ }^{(*)} \\ & \boldsymbol{R 1}^{\left(1981^{(*)}\right.} \end{aligned}$	Register	Delay time 'Inversion of direction'
		Each register contains the value of how long the delay time (halt) shall be until a blind can be moved into the opposite direction. If the OFF \rightarrow ON delay time (R1970/1971) is greater than the delay for the inversion of direction, then the longer OFF \rightarrow ON delay time will be effective.
	2	
	R 1980	Delay time, inversion of direction for blind 1
	R 1981	Delay time, inversion of direction for blind 2

R1990 ${ }^{(*)}$	DI No.	$\frac{\text { Value Hex }}{\text { (DI4 .. DI1) }}$	Configuring the DI's as limit switches With the help of this configuration register, the four DIs can be defined to be used as limit switches. Doing so, the drive will switch off when an end position is reached. At the same time, the position of the blind (which is constantly calculated in the module) is corrected to 0% (closed) or 100% (opened) depending on the end position. If no end position is reached in automatic mode within the configured runtimes (open/close runtime plus additional time, if configured), the drive will switch off, anyhow, for safety reasons, but not in manually overridden mode.
		0000	DI's are not used for limit switches
	1	0001	End position CLOSED of blind 1
	2	0002	End position OPENED of blind 1
	3	0004	End position CLOSED of blind 2
	4	0008	End position OPENED of blind 2

R1991 ${ }^{(*)}$		Value Hex	Configuring the DI's for controlling open/close
	DI No.	(DI4 .. DI1)	With the help of this configuration register, the four Dls can be defined to be used for controlling the outputs using externally connected switches. Doing so, the outputs will be controlled in exactly the same way as with the switches on the module. Any configured runtimes are not taken into account - as is also the case in manually overridden mode.
		0000	Controlling the blind by means of the Dl's is deactivated
	1	0001	DI1 activates opening of blind 1
	2	0002	DI2 activates closing of blind 1
	3	0004	DI3 activates opening of blind 2
	4	0008	DI4 activates closing of blind 2

Digital Inputs:

R101 ${ }^{(*)}$		Value Hex	Status of Digital Inputs
	DI No.	(DI4 ... DI1)	The bits of this register indicate the current status of the digital inputs. The least significant bit is associated with DI1, followed by the other ones up to DI4.
	1	0001	DI 1
	2	0002	DI 2
	3	0004	DI 3
	4	0008	DI 4

R100	(*)	Value Hex	Change flag Digital Inputs
	DI No.	(DI4 ... DI1)	The bits of this register are set when the state of a DI has changed. When the register has been read, all bits are automatically reset to zero. Each DI is assigned to a bit of the register. The assignment corresponds to that of the register R101 (current status of the digital inputs).
	1	0001	Change of DI 1
\ldots	\ldots	\ldots	

R1101 $^{(*)}$		Value Hex	Delay of the edge detection
	DI No.	(DI4 ... DI1)	This register determines for which inputs the detection of a change of the input signal has to be delayed. This is necessary if the DIs have to be driven with AC. The delay time is set in the register R1111. Each DI is assigned to a bit of the register. The assignment corresponds to that of R101.
		$\mathbf{0 0 0 0}$	None of the DI signals will be delayed
	1	0001	Signal of DI 1 delayed / smoothed
	\ldots	\ldots	\ldots

R1111 $^{(*)}$		Value Dec	Time for the delay of the input signal
			A change of signal which is connected to a DI will be realized only after expiry of this time. The value in the register R1111 multiplied by 10 gives the delay time in milliseconds.
		$\mathbf{1 0}$	Delay $=\mathbf{1 0 0} \mathbf{~ m s ~ (i f ~ a c t i v a t e d ~ u s i n g ~ R 1 1 0 1) ~}$
		4	Delay $=\mathbf{4 0}$ ms (minimum recommended for 50 Hz AC signals)

D8 - Overview of Registers which all modules have in common

In the following descriptions of the register settings, default values, if any, are highlighted. These settings are suitable for most applications and at the initial commissioning.
The values in the underlined registers are stored in non-volatile memory. These registers should not be written continuously.
${ }^{(*)}$ The registers marked with this asterisk can be read or written only individually, not as a contiguous block.

R 2 $^{(*)}$	Value Dec	Setting the baud rate	
			Using this register, the baud rate is set. So that this setting will take effect, the automatic baud rate detection (autobaud) must be deactivated in register R 3. Note: This register is not suitable to display the current baud rate if autobauding is enabled. For this purpose, the register R 22 may be used.
	1	57.600 Baud	
	2	38.400 Baud	
	3	19.200 Baud	
	4	9.600 Baud	

R 3 $^{(*)}$		Value Dec	Automatic baud rate detection
			The setting in this register determines whether autobauding should be enabled or whether the module operates at a fixed baud rate, which is configured in register R 2.
		0	Autobaud function is disabled
		1	Autobaud is enabled during the first 5 minutes after a cold start

R $6{ }^{(*)}$	Value Dec	Sending a command to the module
		By means of this register, functions like lamp test and the reset of counters, masks or even the entire module can be triggered by sending a command to the device.
	1	Resets the module via watchdog (incl. reset of all masks to default values!)
	10	Lamp test (short time)
	11	Lamp test (longer time)
	20	Resets all masks to default values
	30	Resets all counter values to zero
	255	Resets all EEPROM parameters to default
	275	= commands $20+255$
	285	= commands $30+255$
	306	= commands $20+30+255+1$

R210 $^{(*)}$		Value Hex	Controlling the two freely usable status LEDs
	LED Nr.	(L2 \ldots L1)	Using the bits of this register, both freely-usable status LEDs can be enabled via bus command. Each color (red and green) of each LED is assigned to a bit of the register.
	1	0001	Switching ON LED 1 (left) in green color
		Switching ON LED 1 (left) in red color	
	2	0004	Switching ON LED 2 (right) in green color
		Switching ON LED 2 (right) in red color	

R1 $^{(*)}$		Value Dec	Reading the set bus address
			With this register the adjusted address of the module can be read via the bus.

R $10{ }^{(*)}$	Value Dec	Reading the type of module
		This register contains the type of module in a coded form. The values have the following meaning:
	5116	romod 16 DI
	5008	romod 8 DO
	5508	romod 8 DO-R
	5504	romod 4 DIO-R
	5404	romod 4 DO-R
	5308	romod 8 Al
	5208	romod 8 AO
	5514	romod 4DI2DO-R-3P

R 12 $^{(*)}$		Value Dec	Reading the firmware version
			Using this register, the firmware version of the module can be read via the bus.

R22 $\mathbf{2 n}^{(*)}$		Value Dec	Reading the current baud rate
			By means of this register, the baud rate with which the module is currently communicating can be read. Doing so, it does not matter whether the baud rate has been fixed using the registers R2 and R3, or it has been identified by the autobaud function.

